Transverse Sensing of Simply Supported Truncated Conical Shells

Authors

  • Ali Asghar Jafari Khaje Nasir University of Technology, Mechanical Engineering Department, Tehran, Iran
  • Rasa Jamshidi Khaje Nasir University of Technology, Mechanical Engineering Department, Tehran, Iran
Abstract:

Modal signals of transverse sensing of truncated conical shells with simply supported boundary condition at both ends are investigated. The embedded piezoelectric layer on the surface of conical shell is used as sensors and output voltages of them in considered modes are calculated. The Governing sensing signal displacement equations are derived based on the Kirchhoff theory, thin-shell assumption, piezoelectric direct effect, the Gauss theory and the open circuit assumption. A conical shell with fully covered piezoelectric layer is considered as a case study and the layer is segmented into 400 patches. Modal voltages of the considered model are calculated and evaluated. The ideal locations for sensor patches are in the middle of conical shell surface in the longitudinal direction and locations near the ends of the conical shell are not recommended. The longitudinal membrane strain signal has a leading role on the total signal in comparison with other strain signal components. The output signals of the sensor can be used as a controller input for later active vibration control or structural health monitoring.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Three-dimensional Magneto-thermo-elastic Analysis of Functionally Graded Truncated Conical Shells

This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded truncated conical shell under non-uniform internal pressure and subjected to magnetic and thermal fields. The material properties are assumed to obey the power law form that depends on the thickness coordinate of the shell. The formulation of the problem begins with the derivation of fundamental r...

full text

Stress Analysis of Rotating Thick Truncated Conical Shells with Variable Thickness under Mechanical and Thermal Loads

In this paper, thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, internal pressure and external pressure is presented. Given the existence of shear stress in the conical shell due to thickness change along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are so...

full text

Thermoelastic Analysis of Rotating Thick Truncated Conical Shells Subjected to Non-Uniform Pressure

In the present work, a study of thermoelastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient and non-uniform internal pressure is carried out. The formulation is based on first-order shear deformation theory (FSDT), which accounts for the transverse shear. The governing equations, derived using minimum total potential energy principle, are solved, usi...

full text

Thermomechanical Buckling of Simply Supported Shallow FGM Spherical Shells with Temperature dependent Material

The thermomechanical buckling of simply supported thin shallow spherical shells made of functionally graded material is presented in this paper. A metal-ceramic functionally graded shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure metal on the inner surface to pure ceramic on the outer surfa...

full text

An Investigation of Stress and Deformation States of Rotating Thick Truncated Conical Shells of Functionally Graded Material

The present study aims at investigating stress and deformation behavior of rotating thick truncated conical shells subjected to variable internal pressure. Material prpperties of the shells are graded along the axial direction by Mori-tanaka scheme, which is achieved by elemental gradation of the properties.Governing equations are derived using principle of stsionary total potential (PSTP) and ...

full text

Non-Linear Analysis of Functionally Graded Sector Plates with Simply Supported Radial Edges Under Transverse Loading

In this study, nonlinear bending of functionally graded (FG) circular sector plates with simply supported radial edges subjected to transverse mechanical loading has been investigated. Based on the first-order shear deformation plate theory with von Karman strain-displacement relations, the nonlinear equilibrium equations of sector plates are obtained. Introducing a stress function and a potent...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 2

pages  212- 230

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023